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Abstract

In this paper, the colors of NCAA Division I basketball programs are clustered in order
to accurately approximate their wide variability in precise RGB specifications with just a
small set of colors. This analysis may be useful in applications where team’s colors need
to be accurately represented but the entire color gamut is not available. In other words,
college basketball clusters are quantized.

1. Introduction

Sports teams use many different colors in their logos, uniforms, and other branding. The
advent of computer graphics has allowed teams to specify precise color codes using the RGB
format, such as #FFC72C, as opposed to more generic expressions like “gold.” The RGB
color gamut contains 2563 = 16, 777, 216 colors, allowing computers to discern the tiny
differences among tints and shades. However, such a fine range is not practical for many
applications, such as those that require physical manifestations of colors—i.e. clothing.
Therefore, in the context of sports, it is useful to reduce the entire gamut to a small palette,
such that every color of every team can be accurately approximated by a member of the
palette.

For the purposes of this analysis, college basketball programs were chosen, as opposed
to professional teams in other sports or other countries. This is in part due to the large
number of programs—there are currently 357 in NCAA Division I. Other top-level leagues
and organizations have a much smaller number, generally no more than 32. Many “minor
leagues,” such as those in baseball or in lower-tier club football divisions, also have a large
number of teams, but they lack sufficient data on the colors and brandings of the teams
involved. Additionally, some minor teams may have intentionally unique color schemes as a
form of self-promotion, so the colors of these teams may not be representative of sports teams
in general. College basketball is a happy medium between the competing characteristics of
a large population, and data availability and consistency.

As colors are represented as points in a feature space, it is natural to cluster them, such
that colors that are close together—that is, colors that look similar—are placed in the same
cluster. For each cluster, its center is itself a color, and that color can be used as a close
approximation for all other colors within its cluster. Thus the set of all possible team colors
can be reduced to the cluster centers.
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2. Data

2.1 Data Collection and Cleaning

Official colors for all 357 NCAA Division I basketball programs were obtained from Wikipedia
[1]. As the only official sources for program colors are the schools themselves, there did not
exist any other complete listing of colors, to the best of the author’s knowledge. The raw
dataset contained color palettes for 830 schools, including all 357 Division I programs. Data
for all non-Division I schools was discarded.

The record for each school included anywhere from 2 to 5 colors, all in hexadecimal
format. Each color is denoted by a string of seven characters. The first character is a
#, which is followed by three pairs, representing the red, green, and blue components of
the color, respectively. Each component is in hexadecimal format, ranging from 00 = 0
to ff = 255. These strings were then converted to tuples of integers, such that #FFC72C

becomes (255, 199, 44).
The next step involved converting each color from the RGB color space to the CIELAB

color space, with illuminant D-65. This was done because CIELAB is close to “perceptually
uniform,” whereas RGB is not. With a perceptually uniform color space, a given numerical
change in the color’s components generally leads to the same change in human perception,
no matter the original color. Such color spaces give proper meaning to the “distance”
between colors. CIELAB, like RGB, represents a color with three quantities: L representing
lightness, a representing a green-red scale, and b representing a blue-yellow scale. L is
bounded between 0 and 100, and a and b are unbounded, but both typically range between
between -100 and 100. The conversion was done using the scikit-image module in Python
[2] [3].

Finally, pure black (RGB: (0, 0, 0), Lab: (0, 0, 0)) and pure white (RGB: (255,
255, 255), Lab: (100, 0, 0)) were removed from the dataset. All schools had at least
one of these two colors listed, and many schools incorporate both in their color schemes.
The intended focus is on the “colors” of the teams, not the prominence of black or white.
After all processing, every school has between 1 and 3 colors, totaling 634 across 357 teams.
Of these colors, 453 are unique.

2.2 Exploratory Data Analysis

Figure 1 shows scatterplots for each pairwise combination of L, a, and b, with each point
representing a color. Visually similar colors appear to be close together for each combination
of variables, although not entirely. For example, note the greens interspersed among the
reds in the second plot. The feature space contains both dense and empty regions, indicating
the presence of clusters. Precisely how many clusters are appropriate is not immediately
obvious from the scatterplots.

3. Methods

3.1 Clustering Algorithm

We want colors that are “close” to each other to be in the same cluster, so our clustering
algorithm needs to leverage distance. The natural choice would be k-means, as it enforces
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Figure 1: Scatterplot projections of the colors in CIELAB space.

that points get assigned to their closest cluster center. However, k-means relies on Euclidean
distance, which is not the best metric for color difference, even though the CIELAB color
space is roughly perceptually uniform. Instead of Euclidean distance, CIELAB has their
own metrics, collectively named ∆E∗. This paper uses the most recent version, called
CIEDE2000, with settings tuned for “imperceptibility” [4]. K-means does not allow for
the use of custom distance metrics, but it has a natural extension that does, called k-
medoids. K-medoids and k-means are very similar, in that both attempt to minimize the
total (squared) distance between points and their cluster centers. The main difference is
that k-medoids requires the “centers” to be actual data points, which allows a distance
matrix to be precomputed, as no other distances will need to be calculated other than
those between the data points themselves. This matrix, using the CIEDE2000 metric, was
calculated with scikit-image and scikit-learn, and the actual clustering algorithm was
implemented using the cluster.KMedoids method of the scikit-learn-extra module [5]
[6].

3.2 Choosing k

One problem with k-medoids is that it requires k to be preselected. One popular method
of choosing k is to use silhouette scores [7]. The larger a silhouette score for a given data
point, the closer it is to points in its own cluster compared to points its closest neighboring
cluster. The average silhouette score across all points in the dataset is a good indication of
whether or not the chosen k is appropriate. To determine k, the procedure described below
was run on 18 candidate values—all of the integers ranging from 3 to 20, inclusive.

K-medoids, like k-means, is highly susceptible to the randomness of the cluster initial-
ization, so two mitigative measures were implemented. The first is that k-medoids++ was
used to initialize the cluster centers. K-medoids++ is a modified implementation of k-
means++, an algorithm for initializing cluster centers such that they tend to start far apart
from each other. This reduces the chance that cluster centers start close together, which
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often leads to “bad” clusterings. Secondly, for each candidate k, 10,000 clusterings were
created, each using a seed chosen at random from the set of all 32-bit integers. Only the
silhouette score of the clustering with the minimum inertia (across all 10,000 clusterings)
was recorded. The same set of seeds was used for all candidate k. The results are shown
below.

Figure 2: Inertia and silhouette score of optimal clustering for candidate k.

As expected, the plot of inertia is monotonically decreasing, because as the number of
clusters grows, points will generally be closer to their cluster’s medoid. More interestingly,
the plot of silhouette scores is bimodal. There is one peak at k = 6, and another at k = 11,
and these two values also correspond to kinks in the inertia plot. Both observations indicate
that 6 and 11 are probably good choices for k.

Note that the selection process only considered the best possible clustering for each k,
in terms of inertia. While this decision would be seen as “overfitting” in many other cases,
the dataset is considered to be a population, not a sample of all possible team colors. Thus
no statistical claims are made about the applicability of the resulting clusters to team colors
in general, although we may consider them informally.

4. Clusters

Two clusterings are created, one with k = 6, and one with k = 11.

4.1 k = 6

The seed that provided the best clustering for k = 6 was 177264706. The 6 medoids returned
by the algorithm are:
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Cluster RGB Hex Lab Cluster Size

1 (6, 49, 91) #06315B (20.0, 3.9, -29.1) 201
2 (182, 30, 46) #B61E2E (39.7, 58.5, 31.5) 143
3 (241, 184, 45) #F1B82D (78.0, 8.8, 72.1) 125
4 (177, 179, 179) #B1B3B3 (72.8, -0.7, -0.2) 81
5 (0, 103, 71) #006747 (38.1, -34.3, 10.9) 45
6 (239, 91, 12) #EF5B0C (57.9, 54.3, 65.3) 39

Table 1: Colors for the optimal clustering with k = 6. Lab values rounded to one decimal
place.

4.2 k = 11

The seed that provided the best clustering for k = 11 was 106384465. The 11 medoids
returned by the algorithm are:

Cluster RGB Hex Lab Cluster Size

1 (0, 40, 85) #002855 (16.4, 7.1, -30.9) 99
2 (254, 195, 37) #FEC325 (82.0, 8.4, 78.1) 87
3 (200, 16, 46) #C8102E (42.5, 65.9, 35.7) 86
4 (174, 178, 181) #AEB2B5 (72.3, -0.8, -2.0) 75
5 (132, 26, 43) #841A2B (29.0, 44.8, 18.0) 53
6 (183, 163, 105) #B7A369 (67.5, -0.9, 32.8) 50
7 (0, 77, 159) #004D9F (33.6, 13.4, -50.0) 46
8 (0, 103, 71) #006747 (38.1, -34.3, 10.9) 43
9 (239, 91, 12) #EF5B0C (57.9, 54.3, 65.3) 34
10 (34, 34, 34) #222222 (13.2, 0.0, 0.0) 31
11 (79, 37, 130) #4F2582 (25.6, 39.2, -45.0) 30

Table 2: Colors for the optimal clustering with k = 11. Lab values rounded to one decimal
place.

5. Discussion

The two clusterings reveal the most prevalent colors among college basketball teams. The
medoid of the largest cluster, in both cases, is navy blue. This makes sense, as it is a
popular alternative to black for many teams. Even in the finer clustering, with lighter blues
shunted off into their own cluster, the navy blue cluster is still the largest. One notable
absence from both lists is sky blue, such as #7BAFD4. This color is commonly associated
with college basketball as it is worn by one of the sport’s premier programs, but apparently
it was not popular or distinct enough to earn its own cluster. Further analysis might give
larger weighting to teams that are more prominent than others.

There are two medoids that appeared exactly the same in both clusters—#006747 and
#EF5B0C. Another common color was red, which split into plain red and a darker crimson
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in the finer clustering. Gray was also popular, as many teams use this in place of black or
white, or as a neutral third color. A surprising inclusion is #B7A369, a shade of tan. Finally,
the last two colors in the finer clustering were off-black, and purple.

6. Other Results

The details in this section primarily refer to the 11-medoid clustering.

6.1 Color Schemes

Of the 357 schools in the dataset, 94 used one color, 249 used two colors, and 14 used three
colors, not including black and white.

The most common color scheme across all schools was just red, #C8102E (in combination
with either black or white), which belonged to more than 30 schools. The next three highest
schemes all involved navy blue, #002755, with gold (#FEC325), gray (#AEB2B5), and red as
the counterparts. Only two schemes with three colors were used by multiple schools, which
were navy and gray with either red or gold. One of the schools with the latter scheme,
however, had a third color that was clearly light blue, which was reduced to gray as a result
of the clustering. Only one school, Providence, had a scheme with gray as the only color,
and zero schools used only orange.

In terms of color difference, the most contrasting two-color scheme was navy-gold, which
18 schools used. Closely behind was purple (#4F2582) and gold, used by 8 schools. Among
all of the schemes used by any team, the one with the least contrast was navy and purple,
used by two schools. In the 11-cluster case, one school actually used two different colors
that both fell within the same cluster. Old Dominion, in addition to its primary navy blue,
used a gray and a light blue, which both fell into the gray cluster.

Schools tended to prefer darker colors as their primary colors. For example, navy was
used as the primary color in 85 schools, about 86 percent of its overall usage, but gold
was only used as the primary color by 11 schools, which was the third-lowest total and
second-lowest percentage of usage. Crimson, #841A2B, was the most likely to be a primary
color given that a school used it—only one out of the 53 schools with crimson used it as a
secondary color.

6.2 Distant Colors

Even though the algorithm assigns each cluster to its closest medoid, this clustering method
can be prone to “mistakes,” e.g. light blues reducing to grays.

The most unique color, which is defined as the color with the largest distance to its closest
neighbor, is #FDF2D9, of Nebraska. A distance of more than 9.7 away from anything else,
this color was reduced to gray. The color farthest away from its medoid was the #00B141

of Marshall, which was a distance of over 27. Tan was its closest medoid as determined by
CIELAB2000, although a human might consider this color’s “proper” cluster to be green.
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7. Conclusion

This document presents an example of k-medoids clustering applied on a real world dataset,
for the purposes of quantization. However, the results provided here are not perfect, as many
colors were assigned to a cluster whose center was not all that perceptually similar. The use
of k-medoids++ encouraged clusters to be far apart from each other, but perhaps there are
better clusterings with the groups closer together. Additionally, the CIELAB color space
and the CIEDE2000 distance metric may not be perfect representations of what humans
actually see.

Despite these flaws, there are still practical uses for this analysis. For example, an
intramural youth basketball program, that wishes to have the color schemes of its teams
closely represent those of a “real-world” league, can use the colors returned by this clustering
algorithm.

References

[1] “Module:College color/data,” Dec. 2020. Page Version ID: 996787440.

[2] “scikit-image: Image processing in Python.”

[3] S. v. d. Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N. Yager,
E. Gouillart, and T. Yu, “scikit-image: image processing in Python,” PeerJ, vol. 2,
p. e453, June 2014. Publisher: PeerJ Inc.

[4] I. C. on Illumination and C. T. C. 1-47, eds., Improvement to industrial colour-difference
evaluation. No. CIE 142-2001 in Technical report, Vienna, Austria: CIE Central Bureau,
2001. OCLC: ocn223775480.

[5] “scikit-learn: A set of python modules for machine learning and data mining.”

[6] “scikit-learn-extra: A set of tools for scikit-learn..”

[7] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and validation of
cluster analysis,” Journal of Computational and Applied Mathematics, vol. 20, pp. 53–
65, Nov. 1987.

7


	Introduction
	Data
	Data Collection and Cleaning
	Exploratory Data Analysis

	Methods
	Clustering Algorithm
	Choosing k

	Clusters
	k = 6
	k = 11

	Discussion
	Other Results
	Color Schemes
	Distant Colors

	Conclusion

